Ott
Microscopi ottici
Il microscopio ottico è il più semplice. Per mezzo di lenti ingrandisce l'immagine del campione, illuminato con luce nell'intervallo spettrale del visibile.
Può essere semplice (un solo sistema di lenti o addirittura una sola lente) o composto (almeno due sistemi, oculare ed obiettivo), e l'illuminazione può raggiungere il campione da dietro, attraversandolo (luce trasmessa), o esserne riflessa (luce riflessa). Il microscopio ottico permette di avere immagini di soggetti dimensionalmente collocati all'incirca tra il millimetro ed il micrometro, anche di esseri viventi. I primi esempi di ingrandimento ottico datano migliaia di anni e risalgono alle civiltà mesopotamiche. Nel 1648 Antoni van Leeuwenhoek osservò e descrisse numerosi microorganismi, utilizzando un microscopio semplice, inizialmente dotato di pochi ingrandimenti e poi perfezionato fino a raggiungerne alcune centinaia (275 accertati, 500 ipotizzati). Nel 1665 Robert Hooke, utilizzando una forma molto rudimentale di microscopio ottico composto, con un limitato potere di ingrandimento ed osservando il sughero vide e descrisse per la prima volta la struttura cellulare propria di tutti i viventi.
Microscopio semplice a luce trasmessa
Come nei primi esemplari di van Leeuwenhoek si tratta di una semplice lente o sistema di lenti (un doppietto frequentemente) con una serie di supporti per il campione ed un sistema elementare di spostamento dell'ottica per la messa a fuoco.
Microscopio semplice a luce riflessa
Come il precedente, l'illuminazione in questo caso è frontale o laterale, il caso tipico è la lente contafili in uso in filatelia e nel controllo dei filati dell'industria tessile.
Microscopio composto a luce trasmessa
È un microscopio che, per vedere i particolari del campione utilizza luce trasmessa attraverso lo stesso, proveniente da una piccola lampadina incorporata, o indirizzata tramite uno specchio da una sorgente esterna (nei primi esemplari storici luce diurna o luce proveniente da una candela o lampada ad olio). Negli esemplari di uso corrente la sorgente più convenientemente utilizzata è una lampada alogena. Da notare che nei microscopi composti, in genere senza particolari accorgimenti l'immagine osservata risulta invertita.
Microscopio composto a luce riflessa
Come il precedente, l'illuminazione in questo caso proviene dall'alto, tramite diversi sistemi. Focalizzazione della sorgente tramite specchi, sistemi a fibre ottiche, LED, epi-illuminazione (che sfrutta lo stesso obiettivo anche per illuminare il campione).
Stereomicroscopi
Microscopio che si avvale in realtà di due diversi e distinti microscopi, in generale composti ed a basso ingrandimento, formanti tra loro un certo angolo. L'osservazione produce un'immagine tridimensionale, come la visione diretta, eliminando l'effetto di appiattimento tipico degli altri tipi di microscopi. In genere sono dotati di un sistema di prismi ottici per il raddrizzamento dell'immagine, e quindi l'eventuale manipolazione corretta del campione. Sono per questo utilizzati nell'industria (micro componentistica), nella dissezione, e nella micro chirurgia.
Microscopio a fluorescenza
Strutturalmente esisterebbero sistemi a luce trasmessa e riflessa, ma per motivi tecnici i primi sono stati relegati ad usi limitati, su campioni opachi. La maggior parte della produzione ed uso prevede sistemi ad epifluorescenza. Questo tipo di microscopio serve per osservare preparati naturalmente fluorescenti, o legati con molecole fluorescenti o rese tali da particolari coloranti detti fluorocromi. Questi composti vanno selettivamente a legarsi con strutture cellulari definite.
La sorgente luminosa (alogena di alta potenza, lampada di wood, lampada ad arco e scarica di gas e più recentemente diodi LED ad alta efficienza e laser), che trasmette radiazioni ultraviolette, o comunque di bassa lunghezza d'onda nel visibile, eccita il preparato generalmente dall'alto (sistemi ad epifluorescenza). Le componenti del preparato emettono luce di lunghezza d'onda maggiore di quella emessa dalla sorgente luminosa. Questo fenomeno è conosciuto come fluorescenza.
Attualmente gli utilizzi più diffusi prevedono l'utilizzo di anticorpi specifici, appositamente prodotti per andare a legarsi con determinate molecole nel campione (che rappresentano l'antigene) utilizzando fluoresceina, rodamina, ed altre simili molecole come fluorocromo legato all'anticorpo per renderlo appunto fluorescente e visibile. Nell'osservazione è fondamentale l'utilizzo corretto dei filtri ottici per selezionare la giusta lunghezza d'onda di eccitazione, la giusta lunghezza d'onda di emissione visibile, e l'arresto della radiazione ultravioletta che danneggerebbe l'occhio dell'osservatore. Gli obiettivi microscopici usati per questo tipo di osservazione non devono contenere lenti che presentino fenomeni di autofluorescenza (come spesso succede per quelli alla fluorite), devono trasmettere l'ultravioletto (se in epifluorescenza, visto che l'illuminazione passa attraverso l'obiettivo), mente il grado di correzione cromatico è poco influente sulla qualità dell'immagine, per cui vanno generalmente bene le ottiche acromatiche.
Microscopio a contrasto di fase
È un tipo particolare di microscopio che analogamente al microscopio a luce trasmessa lavora nel campo del visibile. Si basa sul fenomeno dell'interferenza luminosa.
Il preparato viene illuminato da un fascio luminoso in realtà suddiviso a livello del condensatore in due porzioni di fase differente e con diverso angolo di incidenza. Il cambiamento ulteriore di fase dovuto alla porzione di luce che attraversa il campione, andandosi a ricombinare con la luce non rifratta renderà visibili componenti trasparenti ma di indice di rifrazione differente da quello del mezzo. In campo biologico, la maggior parte dei componenti cellulari è trasparente alla luce visibile, anche a causa dell'elevata presenza di acqua, tuttavia vediamo che le radiazioni luminose una volta oltrepassata una componente o un organello cellulare, subiscono dei cambiamenti di fase che dipendono sia dallo spessore, sia dal diverso indice di rifrazione della struttura oltrepassata. Mediante il microscopio a contrasto di fase è possibile andare a determinare tali cambiamenti e convertirli in differenze di densità così da ottenere delle informazioni utili circa la composizione di cellule e tessuti analizzati. Questa tecnica di microscopia è molto utilizzata per andare ad osservare le cellule mantenute in vita in apposite colture in vitro; infatti tramite la microscopia a contrasto di fase si evita l'utilizzo di coloranti e fissativi che spesso comportano notevoli alterazioni strutturali ottenendo così dei dati molto più reali di quella che è l'organizzazione cellulare. La tecnica in questione fu messa a punto dal fisico olandese Frederik Zernike (Frits Zernike) negli anni '50 e gli valse il Premio Nobel per la fisica nel 1953.
Microscopio a contrasto interferenziale
Analogamente al contrasto di fase è utilizzato per osservare strutture trasparenti non altrimenti visibili in campo chiaro. Combina effetti di interferenza e di polarizzazione e fornisce immagini più contrastate e con un effetto di tipo tridimensionale. Questo metodo di contrasto è conosciuto anche con il nome di "DIC" (differential interference contrast). Una delle due tecnologie più utilizzate è la Nomarski, dal nome dell'inventore della configurazione ottica che si ritrova in diffusi microscopi odierni a contrasto interferenziale.
Microscopio ad interferenza
Si attua con due treni di onde completamente separate e tramite due diversi percorsi ottici: uno attraversa il preparato che lo sfasa, indi si incontra con il secondo non sfasato, dando luogo a fenomeni di interferenza. Queste forniscono notizie utili, anche quantitative, sui componenti presenti nel campione.